Bounded complexes of flat modules

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexes of $C$-projective modules

Inspired by a recent work of Buchweitz and Flenner, we show that, for a semidualizing bimodule $C$, $C$--perfect complexes have the ability to detect when a ring is strongly regular.It is shown that there exists a class of modules which admit minimal resolutions of $C$--projective modules.

متن کامل

Periodic Flat Modules, and Flat Modules for Finite Groups

If R is a ring of coefficients and G a finite group, then a flat RG-module which is projective as an R-module is necessarily projective as an RG-module. More generally, if H is a subgroup of finite index in an arbitrary group Γ, then a flat RΓmodule which is projective as an RH-module is necessarily projective as an RΓ-module. This follows from a generalization of the first theorem to modules o...

متن کامل

Generalized Local Homology Modules of Complexes

The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...

متن کامل

Homological dimensions of complexes of R-modules

Let R be an associative ring with identity, C(R) be the category of com-plexes of R-modules and Flat(C(R)) be the class of all at complexes of R-modules. We show that the at cotorsion theory (Flat(C(R)); Flat(C(R))−)have enough injectives in C(R). As an application, we prove that for each atcomplex F and each complex Y of R-modules, Exti (F,X)= 0, whenever Ris n-perfect and i > n.

متن کامل

Relative Cotorsion Modules and Relative Flat Modules

Let R be a ring, M a right R-module, and n a fixed non-negative integer. M is called n-cotorsion if Extn+1 R N M = 0 for any flat right R-module N . M is said to be n-flat if ExtR M N = 0 for any n-cotorsion right R-module N . We prove that ( n n is a complete hereditary cotorsion theory, where n (resp. n) denotes the class of all n-flat (resp. n-cotorsion) right R-modules. Several applications...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1979

ISSN: 0022-4049

DOI: 10.1016/0022-4049(79)90030-6